環(huán)保在線APP
開(kāi)啟線上直播
微信公眾號(hào)
訂閱更多信息
環(huán)保在線小程序
更多流量 更易傳播
產(chǎn)品詳情
Resipher 細(xì)胞能量代謝分析系統(tǒng)是在標(biāo)準(zhǔn)孔板中直接精確地測(cè)試樣本的耗氧量。該系統(tǒng)采用了高分辨率動(dòng)態(tài)光學(xué)氧氣傳感器,對(duì)細(xì)胞無(wú)干擾。儀器設(shè)計(jì)小巧,緊湊,操作簡(jiǎn)易。將含樣本的孔板放置在測(cè)試環(huán)境中后,直接把帶探針的蓋子插入即可,無(wú)需再次轉(zhuǎn)移樣本,因此可以消除環(huán)境改變?cè)斐傻挠绊憽?/p>
Resipher細(xì)胞能量代謝分析系統(tǒng)軟件為網(wǎng)格化設(shè)計(jì)可以對(duì)每個(gè)孔板內(nèi)的樣本一一對(duì)應(yīng)監(jiān)測(cè),并對(duì)其快速、可視化地讀取和分析數(shù)據(jù)。最終通過(guò)電腦或移動(dòng)終端遠(yuǎn)程實(shí)時(shí)產(chǎn)看實(shí)驗(yàn)數(shù)據(jù),獲取細(xì)胞狀態(tài)。
Resipher采用高分辨率光學(xué)氧氣傳感器,測(cè)定細(xì)胞培養(yǎng)中的耗氧量及氧環(huán)境的變化。
Resipher是一款手持便攜式設(shè)備,將其放置于96孔板上,再置于培養(yǎng)箱中,即可完成對(duì)孔板內(nèi)的樣品的測(cè)試。 實(shí)驗(yàn)只需將無(wú)菌帶光纖探針的蓋子與Resipher主控制盒連接,蓋子上的探針就可以直插入培養(yǎng)基中內(nèi)進(jìn)行信號(hào)采集。微型探針直徑500 μm,對(duì)細(xì)胞織無(wú)損傷。
細(xì)胞耗氧量是通過(guò)培養(yǎng)基中的氧濃度的梯度變化來(lái)直觀反應(yīng)的。通過(guò)動(dòng)態(tài)掃描,讀取培養(yǎng)基中的氧濃度的梯度變化,再通過(guò)信號(hào)處理和計(jì)算得出實(shí)時(shí)的細(xì)胞耗氧量數(shù)值。
數(shù)據(jù)記錄儀放置在培養(yǎng)箱外,可擴(kuò)展連接8個(gè)主控制盒。軟件為網(wǎng)格化設(shè)計(jì)即對(duì)每個(gè)孔板內(nèi)的樣本一一對(duì)應(yīng)分析,實(shí)現(xiàn)對(duì)每個(gè)樣本的監(jiān)測(cè),可視化快速分析。
除了耗氧量外,也可獲取氧氣濃度、培養(yǎng)箱溫度、相對(duì)濕度、大氣壓、設(shè)備運(yùn)行狀態(tài)和其它環(huán)境因素參數(shù)。
高靈敏度傳感器,精準(zhǔn)度高,誤差小。
小巧緊湊,不占空間,兼容大多數(shù)培養(yǎng)箱。
精巧設(shè)計(jì),無(wú)菌光纖探針的蓋子。置于孔板和主控制盒之間。
兼容各品牌的標(biāo)準(zhǔn) 96孔板,目前提供每孔板32通道探針。
實(shí)時(shí)連續(xù)監(jiān)測(cè)分析
即插即用式USB-C連接
非侵入式測(cè)試
可擴(kuò)展通道數(shù)
Li, C., Hakkim, H., Sinha, V., Sinha, B., Pardo, M., Cai, D., ... & Rudich, Y. (2024). Variation of PM2. 5 Redox Potential and Toxicity During Monsoon in Delhi, India. ACS ES&T Air.
Santiappillai, N., Cao, Y., Hakeem-Sanni, M. F., Yang, J. Y. H., Quek, L. E., & Hoy, A. J. (2024). Pathway metabolite ratios reveal distinctive glutamine metabolism in a subset of proliferating cells. bioRxiv, 2024-02.
Crockett, A. M., Kebir, H., Velez-Colon, M. C., Iascone, D. M., Cielieski, B., Rossano, A., ... & Alvarez, J. I. (2024). Neurovascular mitochondrial susceptibility impacts blood-brain barrier function and behavior. bioRxiv, 2024-02.
Triolo, M., Baker, N., Agarwal, S., Larionov, N., Podinic, T., & Khacho, M. (2024). OPA1 mediates muscle differentiation by promoting a metabolic switch via the supercomplex assembly factor SCAF1. Iscience.
Burban, A., Tessier, C., Pinglaut, M., Guyon, J., Galvis, J., Dartigues, B., ... & Sharanek, A. (2024). Exploiting a metabolic vulnerability in brain tumour stem cells using a brain-penetrant drug with safe profile. bioRxiv, 2024-01.
da Veiga Moreira, J., Nleme, N., Schwartz, L., Leclerc-Desaulniers, K., Carmona, E., Mes-Masson, A. M., & Jolicoeur, M. (2024). Methylene Blue Metabolic Therapy Restrains In Vivo Ovarian Tumor Growth. Cancers, 16(2), 355.
Iworima, D. G., Baker, R. K., Ellis, C., Sherwood, C., Zhan, L., Rezania, A., ... & Kieffer, T. J. (2024). Metabolic switching, growth kinetics and cell yields in the scalable manufacture of stem cell-derived insulin-producing cells. Stem Cell Research & Therapy, 15(1), 1.
Trevisan, R., & Mello, D. F. (2024). Redox control of antioxidants, metabolism, immunity, and development at the core of stress adaptation of the oyster Crassostrea gigas to the dynamic intertidal environment. Free Radical Biology and Medicine, 210, 85-106.
Zlatic, S. A.; Werner, E.; Surapaneni, V. et. al. (2023). Systemic proteome phenotypes reveal defective metabolic flexibility in Mecp2 mutants, Human Molecular Genetics, ddad154
Pardo, M.; Li, C.; Jabali, A. et. al. (2023). Toxicity mechanisms of biomass burning aerosols in in vitro hepatic steatosis models. Science of The Total Environment, 905, 166988.
Heden, T. D.; Franklin, M. P.; Dailey, C. (2023). ACOT1 deficiency attenuates high-fat diet–induced fat mass gain by increasing energy expenditure. JCI Insight. 8, e160987.
Nikitina, A. A., Roysam, T., & Kemp, M. L. (2023). Early dynamic changes in iPSC oxygen consumption rate predict future cardiomyocyte differentiation. Biotechnology and Bioengineering, 120, 2357–2362.
Misare, K.R.; Ampolini, E.A.; Gonzalez, H.C. et al. (2023). The consequences of tetraploidy on Caenorhabditis elegans physiology and sensitivity to chemotherapeutics. Sci Rep 13, 18125.
Wit, N.; Gogola, E.; West, J. A. et al. (2023). A histone deacetylase 3 and mitochondrial complex I axis regulates toxic formaldehyde production, Sci. Adv., 9, eadg2235.
Rabussier, G.; Bunter, I.; Bouwhuis, J. et. al. (2023) Healthy and diseased placental barrier on-a-chip models suitable for standardized studies, Acta Biomaterialia.
Smith, M.; Yang, F.; Griffiths, A. et. al. (2023) Redox and metal profiles in human coronary endothelial and smooth muscle cells under hyperoxia, physiological normoxia and hypoxia: Effects of NRF2 signaling on intracellular zinc, Redox Biology, 62, 102712.
Chang, J.H.; Xue, Z.; Bauer, J. et. al. (2023) Artificial Space Weathering to Mimic Solar Wind Enhances the Toxicity of Lunar Dust Simulants in Human Lung Cells, Authorea.
Mohan, A.; Griffith, K.A.; Wuchu, F. et. al. (2023) Devimistat in combination with gemcitabine and cisplatin in biliary tract cancer: Pre-clinical evaluation and phase 1b multicenter clinical trial (BilT-04), Clin Cancer Res ,CCR-23-0036.
Bell, H.; Huber, A.; Singhal, R. et. al. (2023) Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer, Cell Metabolism, 35, 134-149.
Tan, J.; Virtue, S. et al. (2022) Oxygen is a critical regulator of cellular metabolism and function in cell culture. bioRxiv.
Dani, S., Windisch, J., XM, V. G., Bernhardt, A., Gelinsky, M., Krujatz, F., & Lode, A. (2022). Selection of a suitable photosynthetically active microalgae strain for the co-ction with mammalian cells. Frontiers in Bioengineering and Biotechnology, 10, 994134.
Achreja, A., Yu, T., Mittal, A. et al. (2022). Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer. Nature Metabolism, 4, 1119–1137.
Salaroglio, I. C., Belisario, D. C., Akman, M., La Vecchia, S., Godel, M., Anobile, D. P., Ortone, G., Digiovanni, S., Fontana, S., Costamagna, C., Rubinstein, M., Kopecka, J., & Riganti, C. (2022). Mitochondrial Ros Drive resistance to chemotherapy and immune-killing in hypoxic non-small cell lung cancer. Journal of Experimental & Clinical Cancer Research, 41, 243
Shu, D. Y., Frank, S. I., Fitch, T. C., Karg, M. M., Butcher, E. R., Nnuji-John, E., Kim, L. A., and Saint-Geniez. M. (2022) Dimethyl Fumarate Blocks Tumor Necrosis Factor-Alpha-Driven Inflammation and Metabolic Rewiring in the Retinal Pigment Epithelium. Front. Mol. Neurosci. 15:896786.
Spinelli, J. B., Rosen, P. C., Sprenger, H. G., Puszynska, A. M., Mann, J. L., Roessler, J. M., Cangelosi, A. L., Henne, A., Condon, K. J., Zhang, T., Kunchok, T., Lewis, C. A., Chandel, N. S., & Sabatini, D. M. (2021). Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science, 374(6572), 1227–1237.
Abouleisa, R. R., McNally, L., Salama, A. B. M., Hammad, S. K., Ou, Q., Wells, C., Lorkiewicz, P. K., Bolli, R., Mohamed, T. M., & Hill, B. G. (2021). Cell cycle induction in human cardiomyocytes is dependent on biosynthetic pathway activation. Redox Biology, 46, 102094.
McNally, L. A., Altamimi, T. R., Fulghum, K., & Hill, B. G. (2021). Considerations for using isolated cell systems to understand cardiac metabolism and biology. Journal of Molecular and Cellular Cardiology, 153, 26–41.
Mohiuddin, M., Choi, J. J., Lee, N. H., Jeong, H., Anderson, S. E., Han, W. M., Aliya, B., Peykova, T. Z., Verma, S., García, A. J., Aguilar, C. A., & Jang, Y. C. (2020). Transplantation of Muscle Stem Cell Mitochondria Rejuvenates the Bioenergetic Function of Dystrophic Muscle. bioRxiv.
*您想獲取產(chǎn)品的資料:
個(gè)人信息: